Single-bubble sonoluminescence
نویسندگان
چکیده
منابع مشابه
Single-bubble sonoluminescence
Single-bubble sonoluminescence occurs when an acoustically trapped and periodically driven gas bubble collapses so strongly that the energy focusing at collapse leads to light emission. Detailed experiments have demonstrated the unique properties of this system: the spectrum of the emitted light tends to peak in the ultraviolet and depends strongly on the type of gas dissolved in the liquid; sm...
متن کاملSingle-bubble sonoluminescence in air-saturated water.
Single bubble sonoluminescence (SBSL) is realized in air-saturated water at ambient pressure and room temperature. The behavior is similar to SBSL in degassed water, but with a higher spatial variability of the bubble position. A detailed view on the dynamics of the bubbles shows agreement between calculated shape stability borders but differs slightly in the equilibrium radii predicted by a ma...
متن کاملTemperature Nonequilibration during Single-Bubble Sonoluminescence.
Single-bubble sonoluminescence (SBSL) spectra from liquids having low vapor pressures, especially mineral acids, are exceptionally rich. During SBSL from aqueous sulfuric acid containing dissolved neon, rovibronic emission spectra reveal vibrationally hot sulfur monoxide (SO; Tv = 2100 K) that is also rotationally cold (Tr = 290 K). In addition to SO, excited neon atom emission gives an estimat...
متن کاملSonochemical effects on single-bubble sonoluminescence.
A refined hydrochemical model for single-bubble sonoluminescence (SBSL) is presented. The processes of water vapor evaporation and condensation, mass diffusion, and chemical reactions are taken into account. Numerical simulations of Xe-, Ar- and He-filled bubbles are carried out. The results show that the trapped water vapor in conjunction with its endothermic chemical reactions significantly r...
متن کاملSingle Bubble Sonoluminescence and Bubble Surface Stability in Surfactant Solutions
The radial dynamics of a single sonoluminescing bubble has been investigated in surfactant solutions. Experimental results show that an increase in the surfactant concentration leads to a decline in the oscillation amplitude and hence light emission intensity. Numerical simulations support this result, showing that under the driving pressures required to achieve single bubble sonoluminescence (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Reviews of Modern Physics
سال: 2002
ISSN: 0034-6861,1539-0756
DOI: 10.1103/revmodphys.74.425